Interactions of the Cytoplasmic Domain of P-Selectin with Clathrin-coated Pits Enhance Leukocyte Adhesion under Flow

نویسندگان

  • Hendra Setiadi
  • Gerald Sedgewick
  • Stanley L. Erlandsen
  • Rodger P. McEver
چکیده

Flowing leukocytes tether to and roll on P-selectin, a receptor on endothelial cells that is rapidly internalized in clathrin-coated pits. We asked whether the association of P-selectin with clathrin-coated pits contributes to its adhesive function. Under flow, rolling neutrophils accumulated efficiently on CHO cells expressing wild-type P-selectin or a P-selectin construct with a substitution in the cytoplasmic domain that caused even faster internalization than that of the wild-type protein. By contrast, far fewer rolling neutrophils accumulated on CHO cells expressing P-selectin constructs with a deletion or a substitution in the cytoplasmic domain that impaired internalization. Neutrophils rolled on the internalization-competent constructs with greater adhesive strength, slower velocity, and more uniform motion. Flowing neutrophils tethered equivalently to internalization-competent or internalization-defective P-selectin, but after tethering, they rolled further on internalization-competent P-selectin. Confocal microscopy demonstrated colocalization of alpha-adaptin, a component of clathrin-coated pits, with wild-type P-selectin, but not with P-selectin lacking the cytoplasmic domain. Treatment of CHO cells or endothelial cells with hypertonic medium reversibly impaired the clathrin-mediated internalization of P-selectin and its ability to support neutrophil rolling. Interactions of the cytoplasmic domain of P-selectin with clathrin-coated pits provide a novel mechanism to enhance leukocyte adhesion under flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering endothelial E-selectin in clathrin-coated pits and lipid rafts enhances leukocyte adhesion under flow.

During inflammation, E-selectin expressed on cytokine-activated endothelial cells mediates leukocyte rolling under flow. E-selectin undergoes endocytosis and may associate with lipid rafts. We asked whether distribution of E-selectin in membrane domains affects its functions. E-selectin was internalized in transfected CHO cells or cytokine-activated human umbilical vein endothelial cells (HUVEC...

متن کامل

Signal-dependent distribution of cell surface P-selectin in clathrin-coated pits affects leukocyte rolling under flow

Flowing leukocytes roll on P-selectin that is mobilized from secretory granules to the surfaces of endothelial cells after stimulation with histamine or thrombin. Before it is internalized, P-selectin clusters in clathrin-coated pits, which enhances its ability to support leukocyte rolling. We found that thrombin and histamine induced comparable exocytosis of P-selectin on endothelial cells. Ho...

متن کامل

Leukocyte adhesion to vascular endothelium induces E-selectin linkage to the actin cytoskeleton

We have examined functions of the cytoplasmic domain of E-selectin, an inducible endothelial transmembrane protein, especially its ability to associate with the cytoskeleton during leukocyte adhesion. Confocal microscopy of interleukin-1 beta (IL-1 beta)-activated human umbilical vein endothelial cells (HUVEC) visualized clustering of E-selectin molecules in the vicinity of leukocyte-endothelia...

متن کامل

Phosphorylation of the cytoplasmic domain of E-selectin is regulated during leukocyte-endothelial adhesion.

E-selectin, a selectin expressed on activated vascular endothelium, supports rolling and stable adhesion of leukocytes at sites of inflammation. Previously, we have reported that leukocyte adhesion to cultured endothelial cells induces association of the cytoplasmic domain of E-selectin with cytoskeletal elements, suggesting that outside-in signaling may occur during E-selectin-mediated adhesio...

متن کامل

Leukocyte adhesion in capillary-sized, P-selectin-coated micropipettes.

OBJECTIVE Leukocyte retention in lung capillaries is observed in normal physiology and following a bacterial infection. It has been hypothesized that cells either become mechanically trapped or adhere to capillary endothelial cells via adhesion molecules. We propose that retention involves both mechanical and adhesive forces and that the biochemical adhesive force is modulated by mechanical for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 142  شماره 

صفحات  -

تاریخ انتشار 1998